您的位置:首页 > 液压千斤顶液压千斤顶

液压千斤顶原理,详细些,为什么人使很小的力能产生很大的力

admin2024-04-03人已围观

液压千斤顶原理,详细些,为什么人使很小的力能产生很大的力

液压千斤顶原理如下:

千斤顶的工作原理是扳手往上走带动小活塞向上,油箱里的油通过油管和单向阀门被吸进小活塞下部,扳手往下压时带动小活塞向下,油箱与小活塞下部油路被单向阀门堵上,小活塞下部的油通过内部油路和单向阀门被压进大活塞下部,因杠杆作用小活塞下部压力增大数十倍,大活塞面积又是小活塞面积的数十倍,由手动产生的油压被挤进大活塞,由帕斯卡原理知大小活塞面积比与压力比相同。

这样一来,手上的力通过扳手到小活塞上增大了十多倍(暂按15倍),小活塞到大活塞力有增大十多倍(暂按15倍),到大活塞(顶车时伸出的活动部分)力量=15X15=225倍的力量了,假若手上用每20公斤力,就可以产生20X225=4500公斤(4.5吨)的力量。工作原理就是如此。当用完后,有一个平时关闭的阀门手动打开,油就靠汽车重量将油挤回油箱。

帕斯卡定律只能用于液体中,由于液体的流动性,封闭容器中的静止流体的某一部分发生的压强变化,将大小不变地向各个方向传递。压强等于作用压力除以受力面积。根据帕斯卡定律,在水力系统中的一个活塞上施加一定的压强,必将在另一个活塞上产生相同的压强增量。如果第二个活塞的面积是第一个活塞的面积的10倍,那么作用于第二个活塞上的力将增大至第一个活塞的10倍,而两个活塞上的压强相等。

液压千斤顶的工作原理是:帕斯卡原理

工作原理是扳手往上走带动小活塞向上,油箱里的油通过油管和单向阀门被吸进小活塞下部,扳手往下压时带动小活塞向下,油箱与小活塞下部油路被单向阀门堵上,小活塞下部的油通过内部油路和单向阀门被压进大活塞下部,因杠杆作用小活塞下部压力增大数十倍,大活塞面积又是小活塞面积的数十倍,有手动产生的油压被挤进大活塞,有帕斯卡原理知大小活塞面积比与压力比相同。这样一来,手上的力通过扳手到小活塞上增大了十多倍(暂按15倍),小活塞到大活塞力有增大十多倍(暂按15倍),到大活塞(顶车时伸出的活动部分)力量=15X15=225倍的力量了,假若手上用每20公斤力,就可以产生20X225=4500公斤(4.5吨)的力量。工作原理就是如此。当用完后,有一个平时关闭的阀门手动打开,油就靠汽车重量将油挤回油箱。

第一,千斤顶手柄对于压下活塞是一个省力杠杆,而且省力倍数很大;

第二,压下活塞和顶起活塞又有面积比,这也是省力的设计。

所以,液压千斤顶完全实现了“四两拨千斤”。

假设人力压杆活塞的面积是1平方厘米,再假设顶杆的活塞面积是100平方厘米,那么只要用1公斤的力就能顶起100公斤的重物.

液压千斤顶(Hydraulic jack),又称油压千斤顶,是一种采用柱塞或液压缸作为刚性顶举件的千斤顶,简单起重设备

请教油压千斤顶的工作原理!!

有机械千斤顶和液压千斤顶等几种,原理各有不同从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。螺旋千斤顶

机械原理,以往复扳动手柄,拔爪即推动棘轮间隙回转,小伞齿轮带动大伞齿轮、使举重螺杆旋转,从而使升降套筒获得起升或下降,而达到起重拉力的功能。但不如液压千斤顶简易。

上面的太复杂,简单的讲利用帕斯卡原理。液体传递压强。压力等于面积*压强。因此人一侧的面积小。压力小。汽车侧的面积大压力大。就这么简单。

液压千斤顶(Hydraulic jack),又称油压千斤顶,是一种采用柱塞或液压缸作为刚性顶举件的千斤顶,简单起重设备

1 引言

液压千斤顶是机动车辆的必备工具,它具有结构简单、体积小、重量轻、自润滑性能好、举升力大、便于维修等优点,但其效率低,操作不当时支点易滑脱,存在不安全因素。本文通过对传统的液压千斤顶工作原理的分析,对其结构和油路进行了改进,设计了一种高效安全的液压千斤顶。

2 传统液压千斤顶的工作原理

传统液压千斤顶的工作原理如图1所示,当手柄向上抬起时,带动活塞上行,单向阀1关闭,活塞缸的工作容积扩大形成真空,在大气压的作用下,油箱中的液体经油管打开单向阀2流入活塞缸中;当压下手柄时带动活塞下行,单向阀2关闭,活塞缸中的油液推开单向阀1,油液进入柱塞缸,使柱塞上升,顶起重物做功。当需柱塞停止时,停止压杆运动,柱塞缸中的油压使单向阀1关闭,柱塞自锁不动;需要柱塞向下返回时,打开截止阀,在一向下的外力作用下,柱塞即可复位。此即传统液压千斤顶的工作原理。

从上述工作原理分析可知柱塞在上升H段的空行程中,其上升速度与其接触到车辆底盘后顶起机动车的速度一样慢,如图2所示,很显然在H段效率太低。

从工作原理分析还可知道柱塞在顶起重物的过程中,如出现支点滑脱,在瞬间失去较大负载的情况下,压力油推动柱塞会以很大的加速度向上运动,释放能量,柱塞一旦飞出,液压千斤顶壳体被打碎易伤及人员。

为克服以上缺点,可对传统液压千斤顶的结构与油路进行改进设计,使其既高效又安全。

3 高效安全液压千斤顶的工作原理

如图3所示,当手柄向上抬时,单向阀1关闭,活塞缸的工作容积扩大形成真空,在大气压的作用下,油箱中的液体经油管打开单向阀2流入活塞缸中,此时液控单向阀不起作用,此过程和传统液压千斤顶的吸油过程一样。

当压下手柄时,带动活塞下行,单向阀2关闭,活塞缸中的液体推开单向阀1,此时,液控单向阀的控制油口有油压,液控单向阀反向被打开,压力油经单向阀1、液控单向阀到达柱塞内的A腔,由于A腔的截面积与活塞的截面积相近,因此柱塞在空行程段快速上升,与此同时,柱塞的下部与B腔(柱塞缸内)的工作容积扩大,形成真空,在大气压作用下,油箱中液体推开单向阀3流入柱塞缸中,当柱塞的顶部接触到载荷后,A腔内油液压力升高,液体推开单向阀4,油液分两路同时进入A腔和柱塞缸中,单向阀3被压力油关闭。

此时千斤顶和传统千斤顶在克服重物做功的效果上一样。当需柱塞停止时,停止压杆运动,柱塞缸中的油压通过液控单向阀,使单向阀1关闭,柱塞就自锁不动;需要柱塞向下返回时,打开截止阀,在一向下的外力作用下,柱塞缸中的液体直接回油箱,而A腔中的油液推开单向阀4后回油箱,使柱塞复位。

从以上分析可看出此千斤顶效率比较高。在顶起重物的过程中,如果出现支点滑脱,此时,液控单向阀的控制油口无压力,此阀迅速反向关闭,使千斤顶的压油腔迅速形成负压,吸住柱塞不能向上运动,从而避免事故发生,安全可靠性更高。

当然在使用此液压千斤顶时仍需严格操作,注意以下两点:

(1)充分估计被举升的物体的重量,选择合适的液压千斤顶以保证可靠的工作;

(2)对单向阀4中的弹簧刚度有一定的要求,即刚度应大于柱塞自重、柱塞上升的摩擦力和打开单向阀3这三者之和,但必须小于使用者压下柱塞时的外力。

4 结束语

液压系统实施合理设计,只有很好地了解与掌握液压元件的构造与工作特性,综合分析系统的工作过程,才能设计出高效安全、合理的液压系统。

参考文献

1 雷天觉. 液压工程手册. 北京:机械工业出版社

2 李芳民. 工程机械液压与液力传动.北京:人民交通 出版社,2000

3 马芸. 高效液压千斤顶. 机床与液压.2000(4)

4 任海军. 液压千斤顶油路系统的改进. 液压与气动.1999(3)

很赞哦! ()

随机图文