您的位置:首页 > 工程案例工程案例

回复:历史上最著名的十二个失身女子?

admin2024-09-03人已围观

一、回复:历史上最著名的十二个失身女子?

例一:不过如此--祝英台

案例二:燕子楼的悲剧--关盼盼

案例三:找到那棵树--红拂

案例四:红杏出墙--步非烟

案例五:永不原谅--霍小玉

案例六:识人不明--杜十娘

案例七:嫁与富贵--绿珠

案例八:只羡鸳鸯不羡仙--白素贞

案例九:鱼玄机的杀气--鱼玄机

案例十:十八春--王宝钏

案例十一:始乱终弃--莺莺

案例十二:芸娘的胸襟--芸娘

二、关于事物正确答案不止一个的一些著名的例子

其实,只要你从不同角度去观察,你就会发现:任何事物的答案都不是唯一的,而是丰富多彩的。

但如果你是正方的话,那就是说事物的答案只有一个是吧.可以说无规矩不成方圆.事物的答案就只有一个.世界之所以可以正常的运转那是因为他们有一个规律,而这个规律却只有一个标准答案.就像1天有24个小时.1小时有60分钟.1分钟有60秒一般.事物之所以只有一个答案就像地球的公转和自转一般.坚定的答案才能让这个世界更好的运做.就像地球上只有一个中国.一个未知的事物,一个谜一样的事物,当人们在不知道他的真正答案时,那么永远只是用猜测的口吻去判定他的真正答案.而当这个事物被正真后,他的答案永远只有一个!就像历史学家研究历史,他们在文献里寻求真正的答案时会有很多不同的观点和分歧.当一个斩钉截铁的证据出现在他们面前时,一切的猜测和分歧都化为乌有.因为答案出现了.而他却只有一个!

甲说,事物的正确答案只有一个.1+1=2,难道还有其他答案么?太阳每天从东方升起,往西边落下,难道还会改变么?一本书的好坏,可以见仁见智,但总一个客观标准,这也有什么疑问么?乙说,正确的答案只有一个这种思维模式,在我门的头脑中以不知不觉根深蒂固.实际上,生活中解决问题的方法并非只有一个,而是多种多样.对一部作品,不同的读者可能有不同的看法.俗话说;一千个读者有一千个林黛玉',就是这个意思乙说,正确的答案只有一个这种思维模式,在我门的头脑中以不知不觉根深蒂固.实际上,生活中解决问题的方法并非只有一个,而是多种多样.对一部作品,不同的读者可能有不同的看法.俗话说;一千个读者有一千个林黛玉',就是这个意思。

是男还是女这个问题是不是有三种答案:是男也是女更是男女混合体?

我主张事物的标准答案是唯一的,就象真诚只是男孩这个答案一样唯一。

这些都是在往上搜索到的,往上还有很多,你可以再去搜索以下,正方是很难的哦。

三、“三等分一个角”是数学史上一个著名问题.今天人们寂静知道,仅用圆规和直尺是不可能做出的

古希腊三个著名问题之一的三等分角,现在美国就连许多没学过数学的人也都知道.美国的数学杂志社和以教书为职业的数学会员,每年总要收到许多“角的三等分者”的来信;并且,在报纸上常见到:某人已经最终地“解决了”这个不可捉摸的问题.这个问题确实是三个著名的问题中最容易理解的一个,因为二等分角是那么容易,这就自然会使人们想到三等分角为什么不同样的容易呢?

用欧几里得工具,将一线段任意等分是件简单的事;也许古希腊人在求解类似的任意等分角的问题时,提出了三等分角问题;也许(更有可能)这问题是在作正九边形时产生的,在那里,要三等分一个60°角.

在研究三等分角问题时,看来希腊人首先把它们归结成所谓斜向(verging problem)问题.任何锐角ABC(参看图31)可被取作矩形BCAD的对角线BA和边BC的夹角.考虑过B点的一条线,它交CA于E,交DA之延长线于F,且使得EF=2(BA).令G为EF之中点,则

EG=GF=GA=BA,

从中得到:

∠ABG=∠AGB=∠GAF+∠GFA=2∠GFA=2∠GBC,

并且BEF三等分∠ABC.因此,这个问题被归结为在DA的延长线和AC之间,作一给定长度2(BA)的线段EF,使得EF斜向B点.

如果与欧几里得的假定相反,允许在我们的直尺上标出一线段E’F’=2(BA),然后调整直尺的位置,使得它过B点,并且,E’在AC上,F’在DA的延长线上;则∠ABC被三等分.对直尺的这种不按规定的使用,也可以看作是:插入原则(the insertion principle)的一种应用.这一原则的其它应用,参看问题研究4.6.

为了解三等分角归结成的斜向问题,有许多高次平面曲线已被发现.这些高次平面曲线中最古老的一个是尼科梅德斯(约公元前240年)发现的蚌线.设c为一条直线,而O为c外任何一点,P为c上任何一点,在PO的延长线上截PQ等于给定的固定长度k.于是,当P沿着c移动时,Q的轨迹是c对于极点O和常数k的蚌线(conchoid)(实际上,只是该蚌线的一支).设计个画蚌线的工具并不难①,用这样一个工具,就可以很容易地三等分角.这样,令∠AOB为任何给定的锐角,作直线MN垂直于OA,截OA于D,截OB于L(如图32所示).然后,对极点O和常数2(OL),作MN的蚌线.在L点作OA的平行线,交蚌线于C.则OC三等分∠AOB.

借助于二次曲线可以三等分一个一般的角,早期希腊人还不知道这一方法.对于这种方法的最早证明是帕普斯(Pappus,约公元300年).利用二次曲线三等分角的两种方法在问题研究4.8中可以找到.

有一些超越(非代数的)曲线,它们不仅能够对一个给定的角三等分,而且能任意等分.在这这样的曲线中有:伊利斯的希皮阿斯(Hippias,约公元前425年)发明的割圆曲线(quadratrix)和阿基米得螺线(spiral of Archimeds).这两种曲线也能解圆的求积问题.关于割圆曲线在三等分角和化圆为方问题上的应用,见问题研究4.10.

多年来,为了解三等分角问题,已经设计出许多机械装置、联动机械和复合圆规.①参看R.C.Yates.The Trisection Prolem.其中有一个有趣的工具叫做战斧,不知道是谁发明的,但是在1835年的一本书中讲述了这种工具.要制做一个战斧,先从被点S和T三等分的线段RU开始,以SU为直径作一半圆,再作SV垂直于RU,如图33所示.用战斧三等分∠ABC时,将这一工具放在该角上,使R落在BA上,SV通过B点,半圆与BC相切于D.于是证明:△RSB,△TSB,△TDB都全等,所以,BS和BT三等分给定的角.可以用直尺和圆规在描图纸上绘出战斧,然后调整到给定的角上.在这种条件下,我们可以说用直角和圆规三等分一个角(用两个战斧,则可以五等分一个角).

欧几里得工具虽然不能精确地三等分任意角,但是用这些工具的作图方法,能作出相当好的近似的三等分.一个卓越的例子是著名的蚀刻师、画家A.丢勒(Albrecht Durer)于1525年给出的作图方法.取给定的∠AOB为一个圆的圆心角(参看图34),设C为弦AB的靠近B点的三等分点.在C点作AB的垂线交圆于D.以B为圆心,以BD为半径,作弧交AB于E.设令F为EC的靠近E点的三等分点,再以B为圆心,以BF为半径,作弧交圆于G.那么,OG就是∠AOB的近似的三等分线.我们能够证明:三等分中的误差随着∠AOB的增大而增大;但是,对于60°的角大约只差1〃,对于90°角大约只差18〃.

很赞哦! ()

上一篇:无尘车间施工'>谈谈自媒体、新媒体和融媒体

下一篇:返回列表'>返回列表

随机图文